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The spin-flop and flop-para phase transitions of a simple uniaxial antiferromagnet are analyzed by a 
Green-function analysis. The temperature dependence of the field for antiferromagnetic resonance, the paral­
lel and perpendicular susceptibilities, and the sub lattice magnetizations are also computed. It is shown that 
these effects are sensitive to the temperature-dependent renormalization of spin-wave energies, and this ef­
fect is analyzed in some detail. Results are in good semiquantitative agreement with antiferromagnetic 
resonance in MnF2 and Cr203, with the phase transition boundaries in MnBr2-4H20, and with the perpendic­
ular susceptibility of MnF2. 

1. INTRODUCTION 

IN this paper we discuss the statistical mechanics of a 
simple uniaxial Heisenberg antiferromagnet, with 

special emphasis on the nature and temperature de­
pendence of the several phase transition boundaries and 
of antiferromagnetic resonance (AFMR). We also con­
sider such thermodynamic properties as the sublattice 
magnetizations and the parallel and perpendicular sus­
ceptibilities. The types of materials motivating the 
investigation are RbMnF2, MnF2, and Cr203, which 
have been studied in the antiferromagnetic phase by 
AFMR and other methods, and MnBr2 • 4H20, an anti­
ferromagnet with small exchange field and low Neel 
temperature, for which the entire phase diagram has 
been studied by a variety of experimental methods. The 
conceptual background of the problem and the heuristic 
significance of the results are discussed respectively in 
this Introduction and in the final section of the paper, 
both of which are self-contained. 

The mathematical model which forms the basis of 
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FIG. 1. Phase diagram for MnBr2-4H20, from Schelleng and 
Friedberg (Refs. 4, 5). The symbol # indicates a specific-heat 
anomaly observed by Schelleng, the O represents measurements 
by Tsujikawa and Kanda (points without error bars—Ref. 6) and 
by Bolger (point with error bar—Ref. 7), by optical absorption. 
The solid curves are schematic, being computed by molecular field 
theory scaled to the experimental points. 

'* Supported by the U. S. Office of Naval Research. 

discussion consists of a simple cubic or a body-centered 
cubic1 array of magnetic ions of spin S, interacting by a 
negative nearest-neighbor exchange interaction. In addi­
tion, we assume the presence of a uniaxial anisotropy'2 

and an external magnetic field, each coaxial with the 
crystalline z axis. 

At a given temperature below the Neel temperature, 
and at sufficiently small field, the individual spins are 
aligned parallel or antiparallel to the field (with, of 
course, random thermal fluctuations around these aver­
age directions). As the field increases a phase transition 
occurs, the spins "flopping" to a generally transverse 
orientation.3 As the field increases further, the spins 
increasingly tilt toward the field direction. At a particu­
lar value of the field the average direction of each spin 
then becomes parallel to the field direction, thereby 
defining a second phase transition to the paramagnetic 
phase, as illustrated in Fig. 1 (taken from the measure­
ments of Schelleng4 and Friedberg5 on MnBr2 • 4H20 and 
of optical absorption measurements6'7). We shall be 
concerned primarily with the antiferromagnetic (low-
field) and the paramagnetic (high-field) phases, and 
with the curves bounding the regions of stability of 
these phases. 

The theoretical interest in the phase transitions 
centers in the direct relationship of the transitions to the 
"renormalization" of the spin-wave energies through 
spin-wave interactions. The role of the renormalization 
effect is most clearly evident when we consider the flop-

1 These structures have the convenient property of being re­
solvable into two sublattices such that the nearest neighbors of an 
ion on one sublattice lie only on the other sublattice. 

2 For a discussion of this model, of the role of the uniaxial 
anisotropy in establishing a unique ground state, and of the re-
concilliation of the uniaxial anisotropy with the otherwise cubic 
crystal symmetry, see J. Van Kranendonk and J. H. Van Vleck, 
Rev. Mod. Phys. 30, 1 (1958). 

3 As is very well known the spin-flop transition occurs because 
the susceptibility is greater in the transverse configuration, and 
the energy — Jx1-^2 overcomes the anisotropy energy which tends 
to keep the spins along the axis of the field. 

4 J. H. Schelleng, Ph.D. thesis, Carnegie Institute of Technology, 
1963 (unpublished). 

5 J. H. Schelleng and S. Friedberg (to be published). 
6 1 . Tsujikawa and J. Kanda, J. Plrys. Radium 20, 352 (1959). 
7 B . Bolger, Communications, Conference de Physique Des 

Basses Temperatures (1955), p. 244 (unpublished), 
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^H-2SzJ 

FIG. 2. Spin-wave spectrum in paramagnetic 
phase at low temperature. 

para transition. Above this transition, in the paramag­
netic phase, the configuration of the system is identical 
to that in a ferromagnet. We can therefore adopt the 
standard spin-wave analysis of the ferromagnet,8 the 
spin-wave frequencies being 

ftco(k) = /* f f -5[ /(0)-/(k)] , (1.1) 

where 7(0) and / ( k ) are the Fourier transforms of the 
exchange interaction, jjL=gefi/2mc, and H is the mag­
netic field.9 The minus sign before the second term in 
Eq. (1.1) has been inserted to take explicit cognizance 
of the negative sign of the exchange interaction, and it 
results in an inversion of the spectrum with respect to 
the usual ferromagnetic case, as indicated in Fig. 2. The 
minimum of the spin-wave spectrum in a simple cubic 
structure occurs at the [111] corner of the Brillouin 
zone,9 where kxa=kya=kza=ir and ^co(km) = fxH— 2SzJ. 
Consequently, this spin-wave frequency becomes nega­
tive if the magnetic field is less than the critical value 
Hc=2SzJ/fx. The spin-wave amplitude then grows ex­
ponentially, corresponding to an instability in the para­
magnetic phase, and a phase transition to the spin-flop 
phase occurs. However, the simple spin-wave theory 
just given predicts no temperature dependence of the 
critical field. But, in fact, the spin-wave frequencies of 
Eq. (1.1) are renormalized10 by a temperature-de­
pendent factor R(T), reflecting the effect on the given 
mode of the presence of other thermally excited spin 
waves. 

*a)(k) = M H - 5 [ / ( 0 ) - J r ( k ) ] U ( r ) , (1.2) 
whence 

ixHc=2$zJR(T). (1.3) 

Thus the temperature dependence of the critical-field curve 
directly reflects the temperature dependence of the spin-wave 
renormalization. 

8 F . J. Dyson, Phys. Rev. 102, 1217, 1230 (1956). 
9 The bracketed expression in Eq. (1.1) is simply 

zJ[l — \ cos&rG—i cos£ya—\ cos&zdf] 

for a simple-cubic nearest-neighbor model, where z is the number 
of nearest neighbors. 

10 A good discussion of the renormalization effects is given by 
F. Keffer and R. Loudon, J. Appl. Phys. 32, 25 (1961). 

Whereas the transition from the spin-flop to the para­
magnetic phase is second order in the Landau11 sense 
(the two phases are indistinguishable at the tranitions), 
the transition between antiferromagnetic and spin-flop 
phases is first order (the phases being distinct at the 
transition). The analysis of this first-order transition is 
therefore complicated by the possibility of metastable 
"superheating" and "supercooling" states, analogous to 
those in a conventional gas-liquid transition. In Fig. 3 
we show a conventional P-V isotherm for a gas-liquid 
transition, and the corresponding E-M isotherm for the 
spin-flop transition; the ordinate in Fig. 3(b) is taken as 
— H to preserve the thermodynamic analogy (—P <--> H) 
At point A the liquid is locally stable (i.e., the free 
energy has a local minimum) and the value of the free 
energy is equal to that in the gas at point D; the pressure 
PA = PD is the pressure of the true first-order transition 
at temperature Th as shown in Fig. 3(c). If the pressure 
is quasistatically decreased below PA along the 7 \ 
isotherm in Fig. 3(a), the local minimum of the free 
energy changes shape, the quadratic terms finally 
ceasing to be positive definite at the point B. At this 
point some generalized coordinate finds a vanishing 
restoring force and the natural frequency of the corre­
sponding dynamical mode vanishes. Thus the point B 
in Fig. 3(a), and the corresponding curve in Fig. 3(c), 
demarcate the limit of local stability of the liquid phase. 

In the antiferromagnet similar considerations apply, 
and along the limiting curve of local stability of the 
antiferromagnetic phase [_B in Figs. 3(b) and 3(d)] one 
of the spin-wave frequencies of the antiferromagnetic 
phase vanishes. We shall refer to the resulting stability 
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FIG. 3. Phase diagrams for liquid-gas and spin-flop transitions. 

11 See for example L. D. Landau and E. M. Lifshitz, Statistical 
Physics (Pergamon Press, Ltd., London, 1958). 
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boundary as the "anti-flop" transition curve; this should 
not be confused with the true "spin-flop" transition 
curve AD, nor with the "flop-anti" transition curve C 
which bounds the stability of the spin-flop phase. We 
shall calculate only the anti-flop transition curve in 
this paper. 

The relationship among the critical fields is most 
simply illustrated at zero temperature. If the spins are 
treated as classical vectors, the energy Eu in the anti-
ferromagnetic configuration can be directly compared 
with the energy E% in the spin-flop configuration. Based 
on the model described in the second paragraph of the 
Introduction [the corresponding Hamiltonian is given 
in Sec, 2, Eq. (2.1)] one finds 

E9-En = %N[zJS* cos20~2nHS cosd-2KS2 cos20] 
-iN[zJS2-2KS2l, (1.4) 

where K is the anisotropy constant and 6 is the angle 
between the spins and the % axis. Minimizing this ex­
pression with respect to the angle 0, we find that the 
resultant energy difference vanishes for a critical field 
Hc° given by 

vHc°=2S[K(zJ-K)J/ (1.5) 

A quantum-mechanical treatment would undoubtedly 
alter the result, and we shall not make quantitative 
reference to this value of the critical field, indicating it 
only for purposes of illustration. 

The critical field bounding the stability of the spin-
flop phase (that is, the flop-anti transition) has been 
analyzed by Wang and Callen12 by a spin-wave analysis. 
They find the critical field 

where 
£=(l-l/2S)in. 

(1.6) 

(1.7) 

Finally, the critical field bounding the stability of 
the antiferromagnetic phase (the anti-flop transition) 
follows from the standard13"15 spin-wave treatment of 
the antiferromagnetic phase. There are two spin-wave 
branches, with energies 

±viH+2S£Kit2(zJ+Ke)J/*, (1.8) 

and the mode of zero wave vector, in the lower branch, 
becomes unstable at the critical field 

M#c
0= 2SZK?(zJ+K?)J'*. (1.9) 

The £2 factors appearing in these equations are, in 
fact, absent in the standard spin-wave theories. How­
ever, Wang and Callen12 have shown that they are intro­
duced if spin-wave theory is suitably altered to treat 

12 Yung-Li Wang and H. B. Callen, Phys. Chem. Solids (to be 
published). 

13 P. W. Anderson, Phys. Rev. 83, 694 (1952). 
14 R. Kubo, Phys. Rev. 87, 568 (1952). 
16 T. Oguchi, Phys. Rev. 117, 117 (1960). 

the low-lying states accurately. And it is clear that these 
factors are required for quantum-mechanical consist­
ency, at least in the case of spin J, for which the effective 
anisotropy constant K£2 must vanish because (S*)2 is 
merely a constant. 

The critical field Hc
a as given above also results from 

our analysis, but with additional quantum corrections, 
of the order of a few percent, arising from the lack of 
saturation of the sublattice magnetization in the ground 
state of the antiferromagnet. In addition, of course 
our analysis extends the critical field curve to nonzero 
temperatures. 

To first order in K/zJ, the critical fields given above 
stand in the ratio 

H«: H«: HJ=ll\+{K/2zJ){l+?y]'. 1: 
XC^( l+^ ) ] 1 / 2 Cl - ( iT /4^ ) (5^ + ^ -2 ) ] . 

For fairly typical values of K and zJ, such as apply 
for instance to MnF2,16 K/zJ~0.01, and the separation 
of the critical fields is of the order of ± 1 % . In such 
cases the distinction among the critical fields would be 
difficult to observe experimentally, and our analysis of 
the stability boundary of the antiferromagnetic phase 
is operationally equivalent to a theory of the true phase 
transition. In MnBr2 • 4H20, K/zJ is of the order of 13% 
and the three critical fields at the lower transition are 
appreciably separated. In fact, a hysteresis of this 
general magnitude is observed in upward and downward 
excursions through the transition.4-5 In such cases the 
antiferromagnetic resonance experiments of Foner17 are 
of special interest. 

In a typical AFMR experiment an applied field is 
adjusted to bring the k~0 spin-wave mode into reso-

Hc=H(0) 

/ / H < W > , H - O / / 

o u ( k ) 

FIG. 4. Spin-wave spectrum of antiferromagnetic phase. For 
H—0 the two branches are degenerate. For an applied field II (o>) 
the branch which moves downward becomes degenerate at k = 0 
with an applied AFMR signal frequency w. For the applied field 
Hc

a the k = 0 mode becomes unstable. 
16 See for example F. M. Johnson and A. H. Nethercot, Phys. 

Rev. 114, 705 (1959); G. G. Low, A. Okazi, R. W. H. Stevenson, 
and K. C. Tuberfield, J. Appl. Phys. 35, 998 (1964). 

17 S. Foner, Phys. Rev. 130, 183 (1963). 
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nance with a specified signal frequency w, rather than 
to reduce its frequency to zero. Such experiments have 
been carried out for instance by Foner17 on single 
crystals of Cr203. The spin-wave spectrum of the anti-
ferromagnet with an applied field is shown in Fig. 4. 
The field H(u>) required for AFMR at frequency o> is 
equal to Hc

a if co=0, and is less than Hc
a for co?^0. The 

loci of H(co) are shown on the phase diagram in Fig. 5. 
Clearly, measurements of H(u>), extrapolated to w = 0, 
give Hc

a even though the actual transition in a given 
material may occur at the lower field Hc°. Thus the 
stability boundary of the antiferromagnetic phase can 
be measured by AFMR experiments. The temperature 
dependence of the Hfa) curves for arbitrary co will be 
calculated in Sec. 7. 

The salts MnCl2-4H20 and MnBr2-4H20 (Fig. 1) 
have been studied intensively. The Neel temperatures 
are of the order of 2°K and the critical fields Hc° [see 
Eq. (1.3)] for the flop-para transition are approximately 
20 kOe. The anti-flop transition in MnBr2-4H20 has 
been observed by Tsujikawa and Kanda6 and by Bolger,7 

by the sudden shift in the optical absorption line at the 
transition. The anti-para transition in the same material 
was observed by Schelleng4 by measurements of the 
specific-heat anomaly in crossing the transition curve. 
Using both single-crystal and powder specimens of the 
two salts, Henry18 observed the change in magnetization 
with temperature for constant fields between 6 and 58 
kOe; a bump appears in the magnetization curves as a 
function of temperature, locating both the anti-para 
and flop-para transitions. 

Jacobs19 also observed magnetization curves to study 
the anti-flop transition in MnF2 . This material has a 
Neel temperature of 68°K, so that the flop-para transi­
tion would be at unavailable field strengths, but the 
anti-flop transition is observed at 93 kOe at tempera­
tures ^20°K. 

If the anisotropy field is larger than, or comparable to, 
the exchange field, the spin-flop phase region contracts 
to zero area, or disappears. The resultant anti-para 
"metamagnetic" transition has been studied by Jacobs20 

in siderite (FeC03), for which the Neel temperature is 
38°K. He again followed the magnetization as a function 
of field at constant temperature and found that for small 
temperatures the anti-para critical field is approximately 
200 kOe. The same phenomenon has also been observed 
in hydrated FeBr2 by Jacobs and Lawrence.21 The Neel 
temperature is 11°K and the antipara critical field is 
approximately 31 kOe for low temperatures. 

Because of the centrality of the spin-wave renormali-
zation effect in the phase transition problem, we employ 
the method of two-time, temperature-dependent Green 

18 W. Henry, Phys. Rev. 94, 1146 (1954). 
1 9 1 . S. Jacobs, J. Appl. Phys. Suppl. 32, 1289 (1962). 
2 0 1 . S. Jacobs, J. Appl. Phys. 34, 1106 (1963). 
2 1 1 . S. Jacobs and P. E. Lawrence, J. Appl. Phys. 35, 996 (1964). 
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FIG. 5. Temperature dependence of the field for AFMR, 
for various signal frequencies. 

functions22 for arbitrary spin. Two decoupling approxi­
mations are explored: the random-phase approximation 
(RPA) as introduced by Tyablikov23 and generalized 
by Tahir-Kheli and ter Haar,24 and the Callen25 de­
coupling approximation (CD). We shall find that at low 
temperatures CD agrees with spin-wave expansions for 
the sublattice magnetizations and the paramagnetic 
phases, and with the spin-wave expansions for both 
phase transition boundaries. Whereas RPA, like molecu­
lar field theory, gives a constant perpendicular suscepti­
bility in the antiferromagnetic phase, CD predicts a 
decrease with temperature, qualitatively similar to that 
observed, for instance, in MnF2.26 However, neither 
approximation is adequate in the neighborhood of the 
Neel temperature. 

In the ferromagnetic case the decoupling approxima­
tions recently have been investigated by Tahir-Kheli,27 

by an ad hoc determination of the optimum decoupling 
to obtain agreement with all available rigorous series-
expansion results. He found that the optimum de­
coupling was the CD, but that an additional inhomo-
geneous term of the form suggested by the work of 
Wortis28 is present. This inhomogeneous term is particu­
larly large for 5 , = | , but for other spin values it has 
significant values only in the vicinity of the Curie tem­
peratures. We accordingly expect the CD results for the 
antiferromagnet to be satisfactory for ST^^ and for 
temperatures comparable to, but not in the immediate 
neighborhood of, the Neel temperature. 

The phase diagram has been previously studied ex­
tensively, using the Neel molecular-field model. Schel­
leng4 gives an excellent review of these studies. The 
model is useful in indicating general qualitative be-

22 N. N. Bogolyubov and S. V. Tyablikov, Dokl. Akad. Nauk 
SSSR126,53 (1959) [English transl.: Soviet Phys.—Doklady 4,589 
(1959)]. A good review article is given by D. N. Zubarev, Usp. 
Fiz. Nauk 71, 71 (1960) [English transl.: Soviet Phys.—Usp. 3, 
320 (I960)]. 

23 S. V. tyablikov, Ukr. Nat. Zh. 11, 287 (1961). 
24 R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 (1962). 
26 H. B. Callen, Phvs. Rev. 130, 890 (1963). 
26 J. W. Stout and M. Griffel, J. Chem. Phvs. 18, 1455 (1950). 
27 R. A. Tahir-Kheli, Phys. Rev. 132, 689 (1963). 
28 M. Wortis, Ph.D. thesis, Harvard University, 1963 

(unpublished). 
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havior, although quantitatively it is in serious disagree­
ment with the rigorous results in the special regions 
where these are available. 

The general problems here considered have received 
little theoretical attention. The spin-flop phase has 
been analyzed by Fu-Cho Pu29 for the special case of 
spin \ and zero anisotropy, using a Green-function 
method. A standard spin-wave analysis of this phase 
has been carried out by Wang and Callen12 for general 
spin and including anisotropy, but restricted, of course, 
to low temperature. Falk30 has used a variational 
method valid at low temperatures for the case of zero 
anisotropy but general spin. Falk has also calculated the 
flop-para transition curve; using CD we find complete 
agreement with his result in the low-temperature region. 
The paramagnetic phase at low temperature is formally 
identical to a ferromagnet and is therefore described by 
standard spin-wave theory. At high temperatures many 
terms in the expansion of the susceptibility in powers of 
1/T have been calculated and studied.31 The antiferro-
magnetic phase for small fields has been studied most 
extensively. In the low-temperature spin-wave region, 
an excellent review article of previous treatments has 
been given by Nagamiya, Yosida, and Kubo.32 The 
Green-function method for arbitrary temperature, but 
for spin J only, has been applied by Ginsburg and Fain.33 

While writing up the results of our own investigation 
we have also received a preprint of a similar Green-
function analysis of the antiferromagnetic phase by 
Hewson and ter Haar34; these authors, incidentally, 
treat the case of anisotropic exchange rather than 
uniaxial anisotropy, thereby avoiding the formal diffi­
culty of decoupling. 

2. GREEN-FUNCTION EQUATIONS: ANTI-
FERROMAGNETIC PHASE 

For the model described in the second paragraph of 
the Introduction the Hamiltonian is 

f,a 

f a f Q 

Here \iS is the magnetic moment per ion, H is the ex­
ternal magnetic field (directed along the negative z axis), 
and / and g label the sites, respectively, of each of the 
two interpenetrating sublattices into which the lattice is 
assumed to be decomposable. Furthermore, for economy 
of notation, we denote the spin operator S/z by f% and 

29 Fu-Cho Pu, Doklady Akad. Nauk. SSSR 131, 1244 (1960) 
[English transl.: Soviet Phys.—Doklady 5, 128 (I960)]. 

80 H. Falk, Phys. Rev. 135, A1382 (1964). 
31 C. Domb and M. F. Sykes, Phys. Rev. 128, 168 (1962). 
82 T. Nagamiya, K. Yosida, and R. Kubo, Advances in Physics 

(Francis & Taylor, Ltd., London, 1955), Vol. 4, p. 1. 
83 V. L. Ginsburg and V. M. Fain, Zh. Eksperim. i Teor. Fiz. 39, 

1323 (1960) [English transl.: Soviet Phys.—JETP 12,923 (1961)]. 
84 A. C. Hewson and D. ter Haar, Clarendon Laboratory, 

Oxford, Great Britain, Ref. No. 121/63 (unpublished paper). 

$f±zBSfxdziSfv by /±. The temperature-dependent 
Green function is defined by 

« 4 « ) ; B » -
-i6(t)(ZA(t),Bl) (<>0) 

ie(t)(£A(l),Bj> (K0) 
(2.2) 

The function 6(t) is the unit step function (zero for nega­
tive argument and unity for positive argument), the 
single angular brackets denote an average with respect to 
the canonical density operator exp[—/33C], (0= l/kBT), 
and the square brackets denote the commutator. The 
Fourier transform of the Green function with respect 
to the time is denoted by ((A;B)). The equation of 
motion satisfied by this function is 

E({A;B))=(l/2Tr){tA,Bl)+{{LA,X];B)). (2.3) 

Knowledge of ({^4; B)) suffices to determine the correla­
tion function (BA(t)) in the usual fashion.22 

We consider here the Green function ((/+; j)) where, 
for convenience, we also introduce the notation 

J=**f (2.4) 

where / and j can be on either sublattice and a is a 
parameter introduced for the purpose described in Ref. 
25. The equation of motion of the Green function is 

(B-„H)((l+; J » = ( l / 2 * ) < [ ^ , m * « « • + « » - ; J » 

+£/««wf-*+*'';J». (2.5) 
i 

We adopt decoupling procedures analogous to those used 
previously in the study of the Heisenberg ferromagnet: 

({fzg+; j)) -» (f*)((g+; J))+«(r)(/-«+)((/+; J», (2-6) 

«r/ + ; i » -> <r>«/+; J))+«(f*)(g-f+X(g+; i » , (2.7) 

where the random-phase approximation23 and the 
heuristic decoupling scheme proposed by Callen25 are 
obtained by appropriate choice of a: 

a = 0 (RPA) 
= 1/(2S») (CD). (2.8) 

As discussed in Ref. 25, at low temperatures CD 
represents an approximate treatment of the deviation 
of fz from +$ and of gz from —S, whereas at high tem­
peratures it represents an approximate treatment of the 
deviations of fz and gz from zero. This consideration 
contributes the factor (gz)/S and (fz)/S to the second 
terms of Eqs. (2.6) and (2.7), respectively; the alterna­
tive choice of — (fz)/S and (gz)/$, respectively, can be 
shown to lead to internal inconsistency of the theory, 
as will be discussed following Eq. (3.24). Furthermore, 
CD can be visualized as an application of Wick's35 

theorem to the boson-like creation and destruction 

86 G. C. Wick, Phys. Rev. 80, 268 (1950). 
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operators 
a t (k ) - (25 )~ i / 2 i : ^ R r ; 

We further note that 

this consideration contributes the remaining factors to 
the second terms of Eqs. (2.6) and (2.7). 

For the Green functions which appear in the ani-
sotropy terms, we adopt a decoupling analogous to 
Eqs. (2.6) and (2.7). 

((Tfi+ff+iJ))-* 
[2(^)™a(^)((/^)+(/7+))]((/+ ; J» , (2.9) 

(0^+£2^~£2:£+, j)) —> 

[2(g2)-a(r)((gV)+(rg+»]«g+; i » • (2.io) 
The choice a = 0 (RPA) corresponds in this case to the 
substitution of 2K(fz)fz for K(fz)2 in the Hamiltonian; 
this is a sort of semi-molecular-field approximation for the 
anisotropy energy. The choice a = 1/(2S2) is less clearly 
motivated for the anisotropy terms (2.9) than for the 
exchange terms (2.6). However, we note that the argu­
ment in terms of the application of Wick's theorem to 
the boson-like operators a(k) and a+(k) proceeds in 
the same fashion. Furthermore, it is reassuring to note 
that this decoupling satisfies a necessary identity for 
spin J; we then have f+fz+fzf+=0 so that the Green 
function (2.9) must vanish. The right-hand member of 
Eq. (2.9) becomes 2(fz)(l--(f+f-)-(f~f+)). However, 
/ + / ~ + / ~ / + ~ 1 for spin J, so that the right-hand mem­
ber of Eq. (2.9) does indeed vanish identically. Finally, 
it can easily be shown that the decoupling does give the 
famous 1(1+1)/2 power law for the effective anisotropy 
coefficient at low temperatures.36 

The Green-function equations of motion now become 

ZE-vH+{g')(zJ-a E , Jfo(f-g+)) 

X(l-a(g-/+»«g+;7)> (2.11) 
and 

[E-vJI+(fXzJ-a £ / / „ < r / + » 

= C».(a)/2T]8ri+E///.<?'> 
X( l -a( / -g+)) ( ( /+;J» , (2.12) 

where z is the number of nearest neighbors and / is the 
value of Jf0 for the nearest-neighbor spins. Further 

ef=(2K/zJ)Zl-a(f-f+)-a(f)2, (2.13) 

eg= (2K/zJ)ll-a(g-g+)-a(g°)l, (2.14) 

and, as in Ref. 25, 

*!(*) = <[>£]> 
= DS(S+l)(*-«- l)+(e-+l)(d/da) 

-(e-a~l)(d*/da2)ye«lz). (2.15) 
86 C. Zener, Phys. Rev. 96,1335 (1954). See also a review article 

by J. H. Van Vleck, J. Phys. Rad. 20, 124 (1959). 

*i(0) = 2<Z'>. (2.16) 

3. FORMAL SOLUTION: ANTIFERRO MAGNETIC 
PHASE 

To diagonalize Eqs. (2.11) and (2.12), we introduce 
Fourier transforms: 

Grr'(k,a) = E « ^ ; J » ^ M w (3-D 
t 

or inversely 

«*+; J » = - £ Grr>(k,a)e**w. (3.2) 
N k 

Here k is a wave vector ranging over the first Brillouin 
zone of the magnetic lattice. The subscripts on G(k,a) 
merely denote the sublattices to which the ions belong; 
r takes the values u (up), or d (down) according to the 
sublattice of /, and / takes the values u, d, according to 
the sublattice of j . Hence G can have the four distinct 
subscripts (uu), (ud), (du), (dd). The Fourier transforms 
of the correlation functions carry similar subscripts, r 
again specifying the sublattice of I and r' the sublattice 
of j : 

*rr'(k,a) = E < J ^ y * * « . (3.3) 
i 

The correlation function of nearest-neighbor spins 
plays a particularly important role, and we therefore 
find it convenient to define: 

^5= (f~~g+) (g nearest neighbor of / ) (3.4) 

and we note that this correlation function has the same 
value for all nearest-neighbor pairs of / and g. 

Finally, we define the transform of Jf9 

/ 
(3.5) 

Multiplying Eq. (2.11) by gn**// and Eq. (2.12) by 
e-ik'R0j a n ( j s u m m i n g over / and g, respectively, gives 

lE-^H+zJ(gz)(l-^8)-zJef(f)2GuAKa) 
= (l/27r)^(a)Awr,+/(k)(/2)(l-^8*)Gdr,(k,a), (3.6) 

[£-M^+^(/3)(l™^5*)-^60<g^)]G^(k,a) 
= ( l /2x)^(a)A^+/(k) (g 2 ) ( l -^ 8 )G^(k ,a ) , (3.7) 

where 

s0 , r^r'. (3.8) 

Solving the two coupled equations for the Green func-
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tions we find 
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GrAk,a) = (l/2ir)[E-h-bv(k,t)']-liE-h+bv(k,!)~]-1 

+/\urAdr,eg(a)J(k)(f*Xl-at5*)+AdrAMf^/(«)^(k)(g2)(l-W'8)}, (3.9) 
where 

/ ? = A t F - i z / [ ( / ' ) ( l - ^ s * - € / ) + { g 2 ) ( l - a ^ - € ( , ) ] J (310) 

5=M(f)(i-**+«/)-(r)(i-*+£»)3. (3-n) 
K M = (l-/27k2)1/2, (3-12) 

and 
<=(&7/i)[-</'><g*>(l-a^,*)(l-o^,)]1/1. 

The Fourier transform of the correlation function consequently is 

(3.13) 

^rr'(k,a) = A„rA^ 
0f(a)r *«(k)+*i(k)+l-l 

- *„(k) - t f , (k) - l+ — 
L v(lu) J 

+ AdrAdr'- 0 B (k) -« i (k) - l -
*,(k)+fc(k)+l-

,(k,0 

Z/Yk 
f - [*«(k)+*i(k)+l] 

2fc(k,0 

X[AM rAd r .0A)</*Xl-# s*)+AdA,r<0/a)<rXl-«^)] , (3-14) 

where 
*-.i(k) = LexppEu,,(k)-1]-1. (3.15) 

The energies of the spin waves in the upper and lower 
branches are, as can be corroborated by comparison 
with conventional spin-wave theory, 

E„,z(k) = fo(k,0±A, (3.16) 

(eagTf+)f=o+8 
= (l/J)2/^(a)(/*>(l-.c^a*)(lA)Ea' 0 (8-6 ' ) , (3.22) 

where the summation over 5' extends over the z nearest-
neighbor vectors. We also note that the function O(R), 
which appears frequently in the theory, can be related 
to the correlations of two spins a distance R apart, in 
each sublattice. 

where the positive sign is associated with the upper 
mode (u) and the negative sign with the lower mode (/). 
The Bose occupation numbers of these modes are <£w(k) 
and (j>i(k). As in the ferromagnetic case it is convenient 
to introduce the Fourier transforms 

$«,,(R) = (2/AOZk c * ^ , i ( k ) , (3.17) 

2 <£w(k)+<^(k)+l 
fl(R) = - 2 > * - R . (3.18) 

N k 2*(k,0 
The correlation functions of particular interest are 

=i«/,(a)C*.(R)-*i(R)-«R.o+2Q(R)], (3.19) 

= i9»(a)C*.(R)-*i(R)-«R.o-2fl(R)]> (3.20) 

(^/-g+W-H 
= (l/4)a/tf/(a)<g*>(l-a*i)(l/*)2> 12(5-5'), (3.21) 

40(R) = 
( / l h+)h~fi+R * (gi g2+)o2-oi+iJ 

</•) •) 
(3.23) 

Equations (3.21) and (3.22) also evaluate \f/&> and with 
the aid of (2.16) 

= ( l /J)2a/</*>(g'>(l-a^a)(l /2)Ea' 0 ( 5 - 5 ' ) (3.24) 

so that ^a is real. 
If a factor —aj had been introduced into Eq. (2.6) in 

place of a(g2), and if aQ had replaced a(fz) in Eq. (2.7), 
Eq. (3.21) would contain the factor ((g*)+oflW whereas 
Eq. (3.22) would contain the factor (</*>—a^a*). The 
consistency of these two equations would then demand 
~af(fz)~®o{gz)- This was the basis for the form of 
decoupling assumed in Eqs. (2.6) and (2.7). 

The three quantities determining the spin-wave 
energies (3.16) can now be written in terms of the sub-
lattice magnetizations and the correlation functions. 

&=W(</ i>-(gJ})(l-^J)+ii:((^)-<r))-aifC((/^-(gJ>2)(*„(0)-*!(0))+2O(0)((/^^+(g')')]) (3.25) 

A=^-|2/((/^+(r))(l-^s)+^((^)+(r))-^[((/z)2+<r)2)(*«(0)-* i(0))+2O(0)(<^^-<g'>2)], (3.26) 

/=(Z//&)(l-o^)(-</*><r>)1/2. (3-27) 
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In order to find the sublattice magnetization we set # = 0 in Eq. (3.19) and note that it is identical in form to 
Eq. (42) of Ref. 25, whence 

</*>={[s-a(o)-K$w (o)^ 
+ [^+l+12(0)+K^u(0)-^KO)~l)][f i (0)+K^(0)~^(0)-- l ) ] 2^ 1} 

xiEi+ow+K^W-^zW-i^^-^w+K^W-^KO)-!)]2^1}-1 . (3.28) 

The expression for (gz) is obtained by substituting the 
function 

i[*«(o)-$,(o)-i]-a(o) 
for 

i [*„(0) -$ , (0) - l ]+O(0) 

in the right-hand member of the above equation. 

4. SUBLATTICE MAGNETIZATION AND SUSCEPTI­
BILITIES AT ZERO FIELD 

For vanishing applied field the formalism simplifies 
greatly and we can easily evaluate the sublattice mag­
netization as a function of temperature. By obvious 
symmetry we have {fz)=—(gz). This implies by Eq. 
(3.28) that <M0) = $Z(0), and by Eqs. (3.15) and (3.16) 
in turn that /z=0. In addition we find: 

*«=-2</ 'X2rOE* '0(8-6 ' ) , 

2K l-2a(fz)Q(0) 
r1^!-

(4.1) 

(4.2) 
zJ l + 2 a ( / ^ ( 3 - 1 ) E 5 ^ ( S - 5 0 

i=a/( /*>[r 1+2a(/«>^ 2 > 12(5-50], (4.3) 

0(R) = (2/i\0£k exp(ik-R)(l-^7k
2)-1 /2 

X C e x p ^ K l - ^ T k 2 ) 1 7 2 - ! ] " ^ ! } , (4.4) 
and 

( / *>=[ (5+ i -O(0 ) ) (Q(0 )+ i )^ 
+(5+§+Q(0))(12(0)-4)^+i] 
X[(O(0)+ | )^+i-(O(0)- | )^+i]~i . (4.5) 

We further recall that, if a is the lattice constant 

7k=Kc°s*aja+cos^j/a+cosfeaa) (sc), (4.6) 

7k = cos\kxa cos^kyd cos%kza (bcc). (4.7) 

The perpendicular susceptibility is determined by the 
correlation functions through the well-known relation37 

Xl=WH{i*jx). (4.8) 

Expressing ix, j x in terms of # , j± and using Eq. (3.14) 
to evaluate the nonzero correlation functions, one obtains 

*«(O)+0i(O)+l 
X*-foW(/*)( l-0 • (4.9) 

_ _ _ _ M0,0 
37 Any standard textbook in statistical mechanics or in particular 

J. H. Van Vleck, Theory of Electric and Magnetic Susceptibilities 
(Clarendon Press, Oxford, 1932). 

By straightforward differentiation, one finds that 

rd 

LdH 
-0(0)1 =0, 
I JH-O 

(4.10) 

from which it follows that the parallel susceptibilities 
of the individual sublattices are equal, and each is half 
of the total parallel susceptibility: 

where 

v J l - y N — I v l l 

rd 

X/' = *tf/J —(f) 
LdH . 

(4.11) 

(4.12) 

and similarly for the definition of Xu
u. 

If the anisotropy constant is negligible, the equations 
for the sublattice magnetizations and susceptibilities 
simplify further. Then /= 1 and O(R) can be evaluated 
[by Eq. (4.4)] in terms of the single parameter fib, 
thereby also determining (/*) [through Eq. (4.5)] in 
terms of fib. Furthermore, we can rewrite Eq. (4.3) in 
the form 

zJ(f)r 1 1 
kBT=-^A l+2a{f*)~ E 0 (5 -60 (4.13) 

f3b L z &' J 

so that kBT is also known in terms of the parameter fib, 
and elimination of fib between these equations yields 
the sublattice magnetization as a function of tempera­
ture for all temperatures below the Neel point. 

Similarly, the perpendicular susceptibility becomes, 
for zero anisotropy, 

X*=y*N(f')/b 

= — |l+2a</^ZO(8-6')J 
2zJL 

(4.14) 
Z « ' 

For a = 0 the perpendicular susceptibility is independent 
of temperature and is equal to the value given by 
molecular-field theory.38 

The parallel susceptibility, for zero anisotropy, 
becomes 

b 2 

/ V (f')uN/ 

38 See Re! 32. 

« (nN/2)fim)~ E exp/36(l-Yk2)1/2 

N k 

X [exp06(l ~7k2)1/2-~ 1]~2, (4.15) 
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TABLE I. Quantum correction constants and coefficients in low-
temperature expansions of 12(0) in the antiferromagnetic phase 
[Eq. (5.6)] and of $(0) in the paramagnetic phase [Eq. (9.11)]. 
Q"(») is the Riemann zeta function defined by f (n) =2 p =i p~n.~\ 

do 

at r=0, 

Simple cubic 

0.156 

0.097 

r(2) 

Body-centered cubic 

0.150 

0.073 

r(2) 
„33/2 

rw -6X33/2 

mm*)** 

Kf)-(3/27r)3/2 

£(4) 
7T2 

-24 

_2V2 

r(»9 
2 1 / 2 

• C ' B C ' ( I ) PEq. (5.4)]. 
*>c=co-c' [Eq. (5.8)]. 

where 

7(0) = 
l-(2S+l)2(^2(0)-i)2* 

(4.16) 

We can use Eqs. (4.4), (4.5), and (4.16) to find X/1 as a 
function of /3b and, as in the analysis of the sublattice 
magnetization, the parameter (3b can be eliminated by 
Eq. (4.13), yielding the parallel susceptibility for all 
temperatures below the Neel point. 

For arbitrary temperatures, all the above calculations 
must be carried out by a computer, for specific numerical 
values of the parameters. In specific temperature 
regions, however, we can obtain general results by series 
expansion. 

5. LOW-TEMPERATURE REGION 

In order to evaluate explicitly the sublattice magneti­
zation for # = 0 , at low temperatures, we first expand 
(fz) in powers of the small quantity 0(0) —J. 

( / « > = 5 - ( 0 ( 0 ) - i ) + ( 2 5 + l ) ( « ( 0 ) - i ) ^ i + . . . . (5.1) 

The function 0(0) is then expanded in powers of the 
reduced temperature 

r = kBT/zJ. (5.2) 

The temperature-independent part of 0(0) is 

G(0) = £ [ V ( f l + l ] , (5.3) 

where 
C '(0 = (2 /7V)Ek( l - / 2 7k 2 ) - 1 / 2 - l (5.4) 

and the value39 of c' for t= 1 is listed in Table I. Thus 

{f*)^S(\-c'{t)/2S). (5.5) 

I t is seen that the sublattice magnetization does not 
fully saturate even in the ground state. However, for 
the case of infinite anisotropy, t=0, c'=0, and the spins 
are completely aligned. 

The effect of anisotropy on the spin-wave energy 
spectrum for U = 0 can be seen by referring to Fig. 4. 
If no anisotropy were present, the spin-wave energy 
would be a linear function of k for small k, vanishing at 
k = 0. However, finite anisotropy produces an energy 
gap at k = 0, and also produces a deviation from linearity 
for small values of k. Eiselle and Keffer40 have investi­
gated the effect of anisotropy by a spin-wave analysis 
of the antiferromagnet at low temperatures. They found 
that there is an effective temperature TAE, below which 
the anisotropy plays an important role in determining 
the sublattice magnetizations and susceptibilities. The 
temperature TAB is a measure of the energy gap in the 
antiferromagnet, and from Eq. (1.8), 

kBTAE==2$£Ke(zJ+Ke)J/2~»Hc«. 

Thus for any material for which Hc
a is practically 

measurable (#</*< 105 Oe), 7 ^ < 1 0 ° K , whereas for a 
material of small Hc

a such as MnBr2 • 4H 20, TAE « 0.6°K. 
We shall accordingly take K=0 in the calculation of 
(/*), X", and X1, so that our resultant temperature 
expansion becomes a formal one valid only for 
TAE«T«TN. 

Expanding the exchange integral in powers of k, 
replacing sums by integrals in reciprocal space, and per­
forming the integrations, we find: 

(̂0) = i(^+l)+a0(^r/5)2 

+a1(zJr/by+0(zJr/by, (5.6) 

where c'=c'(l), a0, and a\ are constants which depend 
on the type of lattice and are listed in Table I. Perform­
ing a similar expansion for the function 0(5—5'), and 
using Eq. (4.3) we also find 

b^zJ(fz){l+2a(f*)t±Co+aQ(zjT/b¥ 

+ 0 ( * 7 T / J ) « ] ) , (5.7) 

where 
2 /27k2 

*o(0 = - E — — ™ — • (5.8) 
N k ( l - * 2 Y k 2 ) 1 / 2 

The constant co^c0(l) can be written as c0^c'+c, and 
the constant39 c is listed in Table I. I t should also be 
noted that the constant a0 in (5.7) is identical to that 
appearing in (5.6) and that it is listed in Table I, whereas 
the term in (zJr/b)A in (5.7) vanishes. Using Eq. (5.1) 
we now solve the set of equations self-consistently in 
powers of r. The results are given for both RPA and CD 

39 Calculated by Anderson and Kubo. See Refs. 13 and 14. 
40 J. A. Eiselle and F." Keffer, Phys. Rev. 96, 929 (1954), 
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(all terms of order c'2 and c2 have been dropped). 

S=i, o>=0: 

< / Z } = V Z / = K 1 - C ' ) - 4 « O T 2 

- 1 6 C a 1 ( l + 2 C ' ) + 2 a 0
2 ( l + c ' ) ] r 4 + O ( r 6 ) ; (5.9) 

5 = f , a = l / 2 5 2 : 

b/zJ=%(l+c)-8ao(c'+c)T*+0(ri), (5.10) 

(/2> = l ( l ~ c ' ) - 4 a o [ l - 2 ( c , + c ) ] T 2 - 1 6 [ a 1 ( l - 2 c ' + 4 c ) 

- 2 a 0
2 ( l - 7 c ' - 8 c ) ] r 4 + O ( r 6 ) ; (5.11) 

S>§, a = 0 : 

(/»> = J / J S / = 5(1 - ( c ' / 2 5 ) ) - a 0 ( l + ( c 7 5 ) ) r 2 / 5 2 

- [ a i ( l + (2c75) )+2a 0
2 ( l+ (5c' /25))/5 

- ( 2 5 + 1 ) W S ( C ' / 2 ) ( T / 5 ) « S - » ] T V 5 * + 0 ( T 6 ) ; 

(5.12) 

5 > f , a = l / 2 5 2 : 

The spin-wave result of Oguchi is 

(5.13) &/z /=S( l+ (c /2S) ) - ao (c+2c ' )T 2 /S 3 +0(T 4 ) , 

( / * > = 5 ( l - ( C 7 2 5 ) ) - a „ ( l - ( C / 5 ) ) r 2 / 5 2 

- [ a , ( l - (2c/5))+2a 0
2 (c+2c ' ) /5 2 

- (25+1) W S ( C 7 2 ) ( T / 5 ) « ^ » ] T 4 / 5 « + 0 ( T « ) . 

(5.14) 

For comparison, the spin-wave result given by Oguchi15 is 

(f*) = S(l-(c'/2S))-aQ(l-(c/S))T*/S> 

- a i ( l - ( 2 c / 5 ) ) r 4 / 5 4 + 0 ( r 6 ) . (5.15) 

I t is seen that both RPA and CD give the same result 
as spin-wave theory for the temperature-independent 
term in the sublattice magnetization. For 5 > § the 
principal part of the r2 term agrees with spin-wave 
theory for both RPA and CD, but the small correction 
of order c agrees only in the CD approximation. In the 
r4 terms, both RPA and CD give spurious contributions 
proportional to <z0

2; these terms arise from the renormali-
zation of the energy in the Green-function analysis, and 
in CD they are an order of magnitude smaller than in 
RPA. The coefficient of the a,\ part of the r4 term agrees 
only in CD. For 5 = | , the temperature-independent 
terms all agree, as well as the principal part of the r2 

term, but now the correction of order c disagrees with 
spin-wave theory in both RPA and CD. 

Using the previous results we can evaluate the perpen­
dicular susceptibility from Eq. (4.14). The results are 

S>i, a=0: 

S>i, ce=l/252: 

/iWf c+c' 
xl-—i 

20/1 25 

Xl=n2N/2zJ; 

— a0\ 
5C+4:C'-\T2 

1 _ _ \-+0(T*) 

25 J 5 3 

(5.16) 

(5.17) 

MW[ c+c' 

2zJ 
1-

25 
+0(T*) (5.18) 

The temperature-independent term of the CD result 
agrees with spin-wave theory, whereas the RPA result 
lacks the quantum corrections and is identical with the 
molecular-field result.38 The T2 term in CD deviates 
from spin-wave theory by a correction of order c, where­
as RPA lacks all temperature-dependent terms. 

To calculate the parallel susceptibility we first find 
from Eq. (3.17) that 

l r d 
-($„(0)-$z(0)) 

.X /„ \\/b)[2a,{zJr/bY 
"% 7 J 

b 2 

+ Ul{zJr/bY+0{zJr/bY']. (5.19) 

Using this result and Eqs. (3.28), and (5.9)-(5.14), we 
again solve self-consistently for the parallel suscepti­
bility. The results are, to order r2 

5 = | , a = 0 : 

X» = 2 x / » = ( M W / a / ) [ 1 6 a o ( l + O T 2 + 0 ( T 4 ) ] ; (5.20) 

S=%, a=l/2S2: 

X , ' - 2X /
1 I - ( M W/2/ ) [16a 0 ( l - 3c -2c / ) r 2 +O( r 4 ) ] ; ( 5 .21 ) 

5 > J , a = 0: 

X" = 2Xf" = {p*N/zJS) 

X[2a 0( l+(3(;725))TV5 2+O(T 4)] ; (5.22) 

5 > f , a = l / 2 5 2 : 

X" = 2Xf
u^(^N/zJS) 
X O o ( l - ( 3 c / 2 5 ) ) r 2 / 5 2 + 0 ( r 4 ) ] . (5.23) 

The spin-wave result of Oguchi for the parallel suscepti­
bility is 

x " = 0*W/2J5)[2ao(l~ (3c /25 ) ) r 2 / 5 2 +0( r 4 ) ] . (5.24) 

The principal part of the r2 agrees with spin-wave theory 
for both RPA and CD. The quantum correction to the 
r2 term is given correctly by CD and incorrectly by 
RPA for 5 > | , but is given incorrectly by both de­
couplings for 5 = f . Although we do not exhibit the r4 

terms, no spurious terms in a<? appear in either RPA or 
CD, and the CD result is correct for 5 > | but incorrect 
in the quantum correction for 5 = | , whereas RPA gives 
an incorrect quantum correction for all 5 . 

6. HIGH-TEMPERATURE REGION 

We first determine the Neel temperature, at which the 
sublattice magnetizations vanish in zero external field. 
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Near the Neel temperature the exponentials in the dis­
tribution function <£M(k) = $z(k) can be expanded and it 
is seen that the function C^(O)]-1 is small. Hence from 
Eq. (4.5), the sublattice magnetization is given by 

(/•>=*5(5+i){[a(o)^-[o(o)]-

rS(S+l) l-i 1 
X +O(12(0))"4. (6.1) 

L 15 20J I 

In addition, it is found that 

Q(0) = zJTFt(-l)(l/b)+(b/zJrl2)+O(b/zJry (6.2) 

and 

b = zJ(f^{t^+2a(f%(zJr/bP)(Ft(~l)-l) 
+ (b/zJTtn2)(Ft(2)-l)+0(b/zJryi}, (6.3) 

where 
FM= (2/^)Ek(l- /7k)w . (6.4) 

The values of Ft(n) for ^ = 1 , 2, and t=l (zero ani-
sotropy) are41 

Fi(l) = l , F1(2) = (z+l)/z. (6.5) 

For n= — l and /= 1 the summation has been evaluated 
by Watson42; it has the values 

JF ,i(-l)= 1.51638 (sc); 1.39320 (bcc). (6.6) 

The Neel temperature is determined by the following 
limits. From (6.1) and (6.2) 

lim </*> = 
S(S+1) 

3 zJrNFt{-\) 
(6.7) 

whereas, for (6.3) 

r zJrN "] 
lim b = zJ<J')\t-i+2a{fM) [^(-l)-l], (6-
/*->o L bt2 J 

whence 

where 

and 

8) 

TN= ro(t){t'1+2aro(t)t-2ZFt(-1)-1]} s 

T0(t) = S(S+l)/3Ft(-l) 

2K l - 2 a [ 5 ( 5 + l ) / 3 ] 
1-

zJ l + 2 a [ ^ ( - l ) - l ] r 0 r 1 

(6.9) 

(6.10) 

(6.11) 

We note that the effect of the anisotropy is to increase 
the value of the Neel temperature, as might be expected. 
For K=0 and a = l / 2 5 2 the Neel temperatures are 
identical with the Curie temperatures of a ferromagnet 

with the same | / | , as given in Ref. 25; similarly for 
a=0 they are the same as those obtained by Tahir-Kheli 
and ter Haar.24 High-temperature expansions by Rush-
brooke and Wood43 give an estimate of the relation 
between the Neel temperature and the Curie tempera­
ture of materials with equal | / 1 , in the form 

41 Easily corroborated from definition of exchange integral, 
Eq. (3.5). 

42 G. N. Watson, Quart. J. Math. 10, 266 (1939). See also 
M. Tikson, J. Res. Natl. Bur. Std. 50, 177 (1953). 

TN=TcZl+0.63/z$($+l)^. (6.12) 

Thus, for example, the difference between the Neel and 
Curie temperatures is about 5% for 5 = 1 in the simple 
cubic structure, and decreases for increasing spin. Our 
result of TN^TC is therefore reasonable. The absolute 
value of rc has been estimated by Rushbrooke and 
Wood, as 

fer«//=a;rc=(S/192)(2-l)[115(5+l)-l]. (6.13) 

Comparisons of the results of RPA and CD with these 
results have been given in Refs. 24 and 25, but for con­
venience we give TN in Table II. 

To expand the sublattice magnetization near TV we 
use Eqs. (6.1)-(6.3), finding that to first order in 
1 — (r/rjv), and for K=0, 

where 
(/*>* = C « ( l - ( r / r t f ) ) , 

r o 2 r ^ ( - l ) 

C„=-
(2 TN"—To. 

1 (2S-l)(2S+3) 2ar 0
2^(- l ) 

(6.14) 

(6.15) 

12 60F(-1) 12z(2rN-r0) 

and F(-i)=Fi(-l), T 0 =T 0 (1 ) . Values for Ca for the 
simple cubic and body-centered cubic lattices, and for 
various spin values are given in Table III. Since the 
Neel temperature predicted by CD is higher than that 

TABLE II. Reduced Neel temperature (TZBTN/ZJ) in the anti-
ferromagnetic phase. [Eq. (6.9), / = 1] and reduced temperature 
[ r ( # c —0)] in the paramagnetic phase [Eq. (9.19)] determined 
for cubic lattices and nearest neighbor interaction. 

RPA 

CD 
antiferro-
magnetic 

CD 
para-

magnetic 

Simple cubic 
0.17 0.22 
0.44 0.54 
0.82 0.98 
1.32 1.54 
1.92 2.23 
2.64 3.03 

Body-centered cubic 

0.18 
0.48 
0.90 
1.44 
2.09 
2.87 

0.23 
0.57 
1.04 
1.64 
2.37 
3.23 

0.11 
0.34 
0.67 
1.01 
1.61 
2.24 

0.14 
0.39 
0.75 
1.24 
1.82 
2.53 

43 G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1, 257 (1958). 
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for RPA, the effect of CD for a given temperature is to 
increase the value of the sublattice magnetization in 
comparison with RPA. 

Since the quantity (f*)/b determines the perpen­
dicular susceptibility [see Eq. (4.14)], it is also found 
from the solutions of Eqs. (6.1)-(6.3) that to first order 
in 1 —(T/TJT), 

x i = = — 1+D 
2 b 2zJ TNL 

where 

2a(F(-l)-lW 

•K)]- (6.16) 

Da = -
2r jv~ To 

(2$-l)(2S+3) F{-\) 

X-
60F(-1) 1 2 s ( F ( - l ) - l ) 

(25- l ) (25+3) 2arQ
2F(-l) 

(6.17) 

60JP(-1) 12z(2rN-ro) 

and the values of Da are listed in Table IV. It should 
be pointed out that in CD the value of the perpendicular 
susceptibility at the Neel temperature is smaller than 
that given by RPA; the ratio of the two values is T0/TJV. 
The slope of %l a t TN, as given by CD, is nonzero and 
negative. A more detailed comparison of RPA and CD 
for the perpendicular susceptibility will^be given in 
Sec. 10. 

Finally, to evaluate the parallel susceptibility Eq. 
(3.17) can be used to obtain, 

l r d 

2LdH 
(o)-*i(o)]l =-[Vx/n—— TT" 

X£(zJT/b)*F(-l)-&+0(b/zJryi. (6.18) 

Using the previous results we find that the parallel 
and perpendicular susceptibilities become equal at the 
Neel temperature, 

where 

Ga= 

-fVta-f 
m a i 

.e 
TO 

V II — Y l 

=GJI—.), 
X w » \ TNJ 

(6.19) 

(6.20) 

2TN— TO 

(2S-l)(2S+3) 2ar0F(-l) 
T2J I 

X-
6 0 F ( - 1 ) 122 

(2S-l)(2S+3) 2ar0
2F(-l) 

(6.21) 

T5" 
6 0 F ( - 1 ) 12z(2rN-ro) 

We note that for OJ=0, Ga= 1, so that in RPA a plot of 
Inx" versus the temperature ratio T/TN should have a 

TABLE III. Coefficients Ca in the temperature expansion of (/*)2 

n e a r r = r * [ E q . (6.15)]. 

s 
i 
1 
* 
2 
1 
3 

Simple 
RPA 

0.49 
2.12 
4.79 
8.40 

12.90 
18.26 

cubic 
CD 

0.42 
2.10 
5.25 
9.90 

16.04 
23.64 

Body-centered cubic 
RPA 

0.54 
2.23 
4.94 
8.58 

13.69 
18.46 

CD 

0.47 
2.21 
5.33 
9.80 

15.32 
22.72 

slope of + 1 at the Neel temperature. Values of Ga are 
given for the two lattice types and various spin values 
in Table IV. 

7. ANTIFERROMAGNETIC RESONANCE (AFMR) 

As described in the Introduction, AFMR measures 
the field H(co) required to reduce the energy of a k = 0 
spin wave to a value flu, determined by the imposed 
signal frequency. Extrapolation of the field H(co) to a>=0 
determines the critical field for the anti-flop transition. 

Such measurements have been carried out, for in­
stance, by Foner17 on Cr203. The crystal structure of 
this material permits the decomposition into two sub-
lattices with the nearest neighbors of a spin on a given 
sublattice belonging only to the other sublattice. The 
anisotropy is uniaxial, with a small effective anisotropy 
field of 700 Oe and an exchange field of 2.45X106 Oe, 
corresponding to a Neel temperature of 308°K. Foner's 
measurements are represented in Fig. 6, where H(oo) 
curves are given as functions of T, for two values of co. 

For a given signal frequency ca, there exists a tempera­
ture Ta(co) Sit which the field H(o)) vanishes. This tem­
perature Ta(o)) is equal to TV for a> = 0, but is less than 
TN for nonzero frequencies. Referring to Fig. 4, it can 
be seen that the temperature Ta(cc) is such that, for 
H=0, the k = 0 spin-wave energy is renormalized down 
to fio). At higher temperatures the k = 0 spin-wave 
energy lies below fiw, and a field must be applied to 
drive Eu(0) up to tiai. The required field H(oo) then in-

TABLE IV. Coefficients in the temperature expansions of perpen­
dicular (Da) and parallel susceptibility (Ga), using CD, near 
T=TN [Eqs. (6.17) and (6.21)]. Here 

Da=-ld]nxl/d(T/TN)lwN [seeEq. (6.16)]; 
for RPA, Da = 0. 

Ga=Zd \nx"/d(T/TN)lT-TN [see Eq. (6.20)]; 
for RPA, Ga = l. 

Simple cubic 
Da Ga 

0.11 0.74 
0.13 0.86 
0.14 0.96 
0.15 1.03 
0.16 1.10 
0.16 1.14 

Body-centered cubic 
Da 

0.11 
0.12 
0.12 
0.13 
0.13 
0.13 

Ga 

0.76 
0.88 
0.96 
1.02 
1.06 
1.10 
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FIG. 6. Schematic of Foner's measurements on CfoOsCwX)) and 
anti-flop transition curve Hc

a=H(co = 0). 

creases with temperature until the anti-para transition 
curve is crossed, at a temperature designated by Tb(co) 
in Fig. 6. 

In this section we restrict our analysis to signal fre­
quencies co which are appreciably greater than zero, 
permitting us to adopt a linear relation between the 
sublattice magnetizations and field. 

(f*)=(f*)iM+2HXf»/nN, (7.1) 

(g')=-(f)*-o+2Hxfn/vN. (7.2) 

In this connection we note that at the stability boundary, 
corresponding to w = 0, the differential susceptibility 
diverges and (fz) is highly nonlinear in II, as is clear 
from Fig. 3(b). This case will be treated in the next 
section. 

The quantities (fz) and Xf
u have been evaluated 

previously in the low- and high-temperature regions 
for zero anisotropy. Equation (3.16) determines the 
spin-wave energy, and for the lower branch at k = 0, 

El(0) = b(i-t2)1/2~h. (7.3) 

Equations (7.1), (7.2), and the previous results can now 
be used to find / as well as b and h. Setting Ei(0) = fio) 
Eq. (7.3) can be solved for the external field 11(G)). In 
the low-temperature region, and to order r2, 

M//(co) = ^ o a ( r = 0 ) [ l + a 0 ( r 2 A 3 ) ] 
~ - £ C O [ 1 + 2 G 0 ( T 2 / S 3 ) ] (T«TO), (7.4) 

where #o is the constant introduced in Eq. (5.6), and 
given in Table I, and where Hc

a(T=0) depends on the 
choice of a as follows: 

F o r a = 0 , 
/ cf\r2Kf 2K\~\1/2 

" ^ - • K ' - s J b M J (7-s) 
and for a= 1/2S2, 

nHc\T=0) = zJs(l+—\ 

\2K( l \ r 2K/ l \ - n 
X — ( 1 ) 2 + — 1 

zJ\ 2S/L zJ\ 2 5 / J 
(7.6) 

The effect of the anisotropy on the small constants c and 
c' has been neglected. Furthermore, corrections of order 
c have been neglected in the r2 terms in Eq. (7.4). As 
might be expected, Hc

a(T=0) vanishes for S=\ in CD 
but not RPA. 

The quantity Hc
a(T=0) is identified as the critical 

field at zero temperature by letting r=co = 0 in (7.4). 
We have accordingly designated this coefficient as 
IIc

a(T=0). However, it should be recalled that the 
analysis required to compute Hc

a generally must take 
cognizance of the nonlinearity of the magnetization for 
fields near Hc

a, whereas Eq. (7.4) is based on an 
assumption of linearity. Nevertheless, the results given 
for Hc

a(T=0) are correct, as will be corroborated in the 
next section, and the justification lies in the fact that the 
susceptibilities, linear or nonlinear, vanish at T=0. 

To investigate the high-temperature behavior, the 
temperatures Ta^ra(o)) and r&^r&(co) must first be 
determined. ra is easily found by requiring H(co) = 0, 
setting Ei(0) = fiai in (7.3), and using the results of Sec. 6. 

For a = 0 , 
ra / 2K( K\ 

1 — = (tia>/zjy / C^o—( 2 + 2 - ) (7.7) 

and for a= 1/252, 

Ta / f e \ 2 / TN (2S-l)2K 
1 ~~[ ) / C„=1/2S2 

TN \ZJJ I To 3S Zj 

( 2 + 2 , (7.8) 
\ zJ 3S TJ 

X 2+2 
Zj 3S TtfJ 

where C«, r0, and rN have been given in Sec. 6. 
At the temperature r6, the field required to drive the 

upper spin-wave energy to fico reduces the lower one to 
zero. Since the two branches are symmetric around their 
value for H= 0, it follows that at r = r6, EH=o(0) = fico/2. 
This criterion enables us to find rh in terms of ra and rN\ 

Tb^lTN+\Ta. (7.9) 

As in the low-temperature case, the required field 
H(a>) can be found from Eq. (7.3). Using Eqs. (7.7) and 
(7.8), a temperature expansion of H(w) to first order in 
ra—r can be put in the convenient form: 

/*#(«) = -
fl(x 

l+Ga(l—(Ta/rN)) rN-~Ta 

(7.10) 

where Ga is the constant appearing in Eq. (6.20) and 
is listed in Table IV. 

In the temperature range Ta<T<Tb, H(<a) is simply 
the negative of Eq. (7.10). I t should be pointed out that 
the magnitude of the slope of H(a>) is large but finite, 
with negative sign for T=Ta~~ and positive sign for 
T=Ta

+. 

The results of the theory are in qualitative agreement 
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with experiment. In the low-temperature region both 
theory and experiment indicate that the slope of the 
H-T curve is positive. In the vicinity of r a ; the exper­
iments of Foner indicate a large negative slope for r<ra 

and a large positive slope for r>rai again in agreement 
with theory. 

A more quantitative comparison with experiment can 
be made by using Foner's experimental results on Cr203 . 
Although the crystal structure of Cr203 is fairly com­
plex, the magnetic lattice can be reasonably approxi­
mated by a body-centered cubic one. Measurements 
indicate that the magnetic ions have an effective spin 
S=%. The exchange integral can be evaluated by using 
Eq. (6.9) for TN (with t=l) and equating it to the 
experimental Neel temperature of 308°K. The theoreti­
cal value of H(a)) at r = 0 , [given by Eqs. (7.4)-(7.6)], 
can be equated with the experimental value of 47 kOe 
corresponding to an AFMR frequency of 36 kMc/sec, 
thereby evaluating K. The comparisons between theory 
and experiment are given in Table V. The theory pre­
dicts an increase in H(o)) with temperature, with a slope 
which is virtually zero (to two significant figures) be­
tween T=0°K and T= 50°K; this agrees with the experi­
mental observations. Comparison of the temperatures 
ra(co) indicates that the results of CD are in much 
closer agreement with experiment than those given by 
RPA. Although not tabulated, the slope of the H-T 
curves at T= Ta(oo) also favors CD rather than RPA. 

8. THE ANTI-FLOP TRANSITION BOUNDARY 

As was indicated in the Introduction, the critical field 
for the anti-flop transition boundary is obtained by 
allowing the external field to increase until the £ = 0 
value of the lower spin-wave energy branch, Ei(0), 
vanishes, as illustrated in Fig. 4. On referring to Eq. 
(7.3) it is seen that the critical field is determined by 
the condition 

h^b(l~t2)1/2. (8.1) 

Using expansions similar to those of Sec. 5 and Eq. 
(8.1), it is straightforward to determine the values at 
r = 0 of the functions $w(0), $j(0), and 12(0): 

and 
*„(0) = *,(0) CT=0) 

G(0) = *(* '+! ) ( r = 0 ) , 

(8.2) 

(8.3) 

where again the effect of. the anisotropy on the small 
quantity c' has been neglected. The sublattice mag­
netizations (fz)T=o and <g*)r-o can be found from Eqs. 
(8.2), (8.3), and (5.1). 

</ '>=-<g'> = 5 ( l - ( c 7 2 5 ) ) . (8.4) 

These results are identical with those given in Eqs. (7.1) 
and (7.2) at r = 0 , since the susceptibility vanishes at 
zero temperature. Consequently, the zero-temperature 
value of the critical field calculated in the previous 
section is correct. 

TABLE V. Comparison of theory and experiment. AFMR of 
Cr203 from Foner's (Ref. 17) measurements. J and K determined 
by 7V = 308°K and the field for resonance at T~0, co/2ir — 36 
kMc/sec. These values are starred in the table. 

Experiment RPA CD 

For CO/2TT=36 kMc/sec: 
HM at r = 0 
dH(fi>)/dTa,tT=0 
Ta 

For CO/2TT=70.6 kMc/sec: 
H(a>) at r = 0 
dH(u)/dTatT=0 
Ta 

47 kOe* 
0 

304°K 

34kOe 
0 

300°K 

47 kOe* 
0 

301 °K 

34kOe 
0 

286°K 

47 kOe* 
0 

305°K 

34kOe 
0 

300°K 

The situation becomes more complex, however, for 
the temperature-dependent terms. The assumption of a 
linear relation between the magnetization and external 
field, which was made in Sec. 7, is no longer valid. As 
indicated in Fig. 3(b), the susceptibility dM/dH becomes 
infinite (for 7 V 0 ) as point B is approached. The low-
temperature expansions of Sec. 5 must also be carried 
out here, but any attempt to linearize the spin-wave 
energies Eu(k) and Ei(k) as functions of k results in a 
divergence of the integrals over k space. Hence the 
exchange integral must be expanded exactly for small 
values of k, 

( l - / «yk 2 ) 1 / 2 =( l -* 2 ) 1 / 2 

+ ^ 2 ( l - / 2 ) - 1 / 2 ( l - - 7 k 2 ) + - - - . (8.5) 

The distribution functions $w(0) and <£>z(0) can then be 
put in the following form: 

*«(0)=f; exp[~2/5^(l--/2)1/2] 

/zJr(l-t2)1/2 

bnt2 

oo /zJr(l-t2y/2\ 

* I ( O ) = E * ( - ), 

n-i \ bnt2 I 

where ^ ) = - E e x p - ( l - 7 k 2 ) . 
N k 2 

) , (8.6) 

(8.7) 

(8.8) 

When the summation in Eq. (8.8) is replaced by an 
integral over k space, it is evident that the leading term 
in the function P{zJT{l—t2)ll2/bnfi) will be propor­
tional to lzJr(l~t2)1/2/bnt2J/2. To obtain a power 
series expansion in r for the sublattice magnetizations, 
the coefficient of P in Eq. (8.6) must vanish. That is, 
the number of thermal spin waves excited by the upper 
branch must be negligibly small. This requirement is 
satisfied by the inequality 

kBT<2b{\~t2)lf2, (8.9) 

since 
b(l-P)l*<=nH?=kBTAit (T=0) (8.10) 
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and TAB is the characteristic temperature discussed in 
Sec. 5. The low-temperature expansions are valid in the 
temperature range 0<T<2TAE> This is an extremely 
restrictive range; for instance, i?c°(7"=0) = 60 kOe in 
Cr203, and TAE~1Q°K. In this temperature range the 
formal expression for the critical field Hc

a would lead 
to a power series in the reduced temperature, r3/2, r5/2, 
etc., but this is of academic interest only. Furthermore, 
the experimental data are for H(o))<Hc° and even in 
this case dH(co)/dT is approximately zero for r < 5 0 ° K . 
Consequently we shall not carry out these calculations. 

Both the CD and RPA treatments of the anti-flop 
transitions are inadequate in the neighborhood of the 
Neel temperature, as we shall now demonstrate. The 
temperature behavior of the critical field near the Neel 
temperature is determined by using Eq. (8.1) and ex­
panding the functions <£>w(0), $z(0), and il(R) as in 
Sec. 6. 

i [ * « ( 0 ) - # , ( 0 ) ] 

= -(l/bt2)zJrF(-l)(l-t2)1/2+0(b/zJr), (8.11) 

s^IV &(&-&') 
= (l/bP)zJr\_F(-1)- i]+0(b/zJT), (8.12) 

O(0) = (l/bt2)zJrF(- l)+0(b/zJr). (8.13) 

Expanding Eq. (3.28) in powers of {4[$«(0) -$ j (0 ) - -1 ] 
+O(0)} _ 1 for (}z) and similarly for (gz), the sublattice 
magnetizations are 

</>>= 
TO bt2 

zjrl-

<rH-
TO 

0O-
where 

(h 

ZJT l + ( l - i ! 2 ) 1 / 2 W r ) • 

T0=S(S+1)/3F(-1). 

(8.14) 

(8.15) 

(8.16) 

Multiplying Eqs. (8.14) and (8.15), using (3.24) and 
(3.27), and taking the limit (/*}-> 0, <g*)-*0, which 
corresponds to Hc

a —>0 [see Eqs. (8.1), (3.25) and 
(3.26)], r(Hc

a=0) is evaluated to be 

This result implies that the temperature required for the 
vanishing of the critical field is independent of the 
anisotropy constant. We would expect that this tem­
perature should be the Neel temperature as calculated 
in Sec. 6, but for finite anisotropy it is not. Furthermore, 
if we add Eqs. (8.14) and (8.15) and use (3.25) for b, 
then (taking a = 0 ) 

r ( f le a =0) = To( l+(2X/aJ) ) . (8.18) 

However, for a = 0 , T(Hc
a=0) = T0 from Eq. (8.17) and 

hence Eqs. (8.14) and (8.15) are inconsistent unless the 
anisotropy constant K is zero. Similar inconsistencies 
obtain for the case of a= 1/252. We must conclude that 

the decoupling procedure (RPA or CD) is inadequate 
for the treatment of the anisotropy in the vicinity of the 
Neel temperature. 

9. PARAMAGNETIC PHASE 

The analysis of the paramagnetic phase is formally 
identical to that carried out for the ferromagnet in 
Ref. 25, except that the sign of the exchange integral is 
changed. The Hamiltonian is 

3e=§Z/,„//»(/+r+/r) 
-nn-Z/f'-KEtif')*, (9.1) 

where the factor \ is put before the exchange terms for 
consistency with the definition of the exchange integral 
used in the antiferromagnetic phase (our / is thus twice 
that of Ref. 25). The Green functions are decoupled as 
in Eq. (2.9) and Ref. 25. The Fourier transforms of the 
Green function, correlation function, and exchange 
integral are defined as in Eqs. (3.1), (33), and (3.5), 
except that now the subscripts r, r' are superfluous. N 
replaces N/2, and the Brillouin zone is now twice as 
large, containing only one rather than two spin-wave 
branches. Noting that ^5 = ^5*, the Green function 
equation of motion is given by 

[ £ - £ ( k ) ] G ( k , a ) = ^(a) /2 f l (9.2) 

r(JJo0=0) = T o [ l + 2 a r o ( F ( - l ) - l ) ] . (8.17) and 

where 

£ ( k ) = M £ r - & / < / ' > ( l - ^ ) ( l - 7 k ) + « / € / < / ' > (9.3) 

and €/ is given by Eq. (2.13). 
Again it is convenient to introduce the Fourier trans­

form $(R) which is the analog of Eq. (3.17), 

^ ( R ) - ^ " 1 ! ; ^ ^ ^ ^ - ! ] - 1 . (9.4) 

The correlation function may now be written as 

<«aO'-*+>*-*-*= *;(<0*(R) • (9.5) 

The correlation functions of particular interest are 

(*'Tf+)=0f(*MO), (9.6) 

^ = < r ^ > ^ / + « = 2 < / * > # ( 6 ) , (9.7) 

E(k) = nH-zJ(f*)(l+at8)(l--yk) 

+2^</ '>[ l -a</ ->(2#(0) + l ) ] . (9.8) 

Comparing Eqs. (9.6) and (3.19), it can be seen that the 
sublattice magnetization (/*) can be obtained from 
Eq. (3.28) by replacing § [ $ u ( 0 ) - $ * ( 0 ) - l ] + O ( 0 ) 
by $(0). 

I t was demonstrated in the Introduction that the 
critical field for the para-anti or para-flop transitions 
can be found by requiring that £(k) = 0 for values of k 
such that — 7k= 1. The critical field Hc is then given by 
Mffc=2s/(/ '>(l+oih) 

-2 i? : ( / ->Cl-a</«>(2#(0)+l) ] . (9.9) 
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At the critical field H=HC, the spin-wave energy E(k) is 

£(k) = a / ( / ' > ( l + o ^ 8 ) ( l + 7 k ) . (9.10) 

To explicitly evaluate the magnetization at low tem­
peratures we use the analog of Eq.• (5.1), expanding (jz) 
in powers of $(0). The function <£>(0) can then be ex­
panded in powers of the reduced temperature r as 
defined by Eq. (5.2). I t should be pointed out that the 
expansion of 7k (sc) in powers of k must be carried out 
around (ir/a{ir/a,i:/a) rather than around (0,0,0) as in 
the antiferromagnetic or ferromagnetic case. 

We find that 

#(0) = i 0 [ r /< / '> ( l+a*a) ] 8 / 2 

+bilr/(f^l+ah)y^+0(ry^ (9.11) 
and 

# ( 5 ) = - ^ 0 [ r / ( ^ ) ( l + ^ 5 ) ] 3 / 2 

+ib£T/(f*)(l+afo)J/2+0(Ty<*} (9.12) 

where the constants b0 and b\ depend on the lattice 
structure but not on a; they are listed in Table I. Using 
Eqs. (9.7), (9.11), (9.12), and (5.1) with $(0) replacing 
12(0) —| we may solve the set of equations self-consis­
tently in powers of r. The results are 

</*> = 5 - J 0 ( r / 5 ) » ^ ~ i i ( r / 5 ) ^ + - • •', (9.13) 

l+a^8=l-2aSb0(r/Sy/2 

+2aS(b1/3)(r/Sy/2+ • • • . (9.14) 

The magnetization is unaffected by the choice of a for 
terms to order r5/2; furthermore, the magnetization to 
this order is the same as obtained in Ref. 25 for the zero-
anisotropy ferromagnet with the same value of | / 1 . To 
this order the results agree with the spin-wave expan­
sions of Dyson8 for the ferromagnet; however, if the 
expansions were carried to any higher order, differences 
between these results and Dyson's would appear. 

The critical field Hc can be found by using Eqs. (9.13) 
and (9.14) in Eq. (9.9). 

liHc= 2zJSll-(b0/S)(r/Sy/Kl+2aS^ 

-(bl/sxT/sy<Ki-hs>)l 
-~2KSll~aS-b0(r/Sy/2 

X ( 2 a ( S - l ) + ( l / S ) ) ] . (9.15) 

The effect of the anisotropy is to move the transition 
curve downward. However, for materials with high 
Neel temperatures and small anisotropy, such as Cr203, 
the effect of the anisotropy constant K can be neglected 
in comparison to the leading term of Eq. (9.15), which 
is the order of zJ. 

I t is instructive to find the temperature dependence 
of the spin-wave energy E(0) at the critical field Hc. 
Using the previous results and Eq. (9.10) it is found 
that to order r3/2, 

E(0) = 2 a / S [ l - (b0/S)(l+2aS2)(r/Sy^+O(ry/22 • 
(9.16) 

Comparing this result with that for the ferromagnet28 

we note that the temperature dependence of the re-
normalization factor (/*)(l+a^a) is r3/2 rather than r5/2. 
Furthermore, the choice of a makes a significant differ­
ence in the coefficient of the temperature terms in the 
expression for the critical field. The coefficient of 
(r/Sy/2 is 2b0/S in CD while it is b0/S in RPA. In a 
paper employing a variational treatment using the 
Holstein-Primakoff variables, Falk30 calculates the 
critical curve (zero anisotropy) in the low-temperature 
region. We find agreement with his results to order r3/2 

for the CD approximation. A more detailed discussion 
of the renormalization effects will be given in Sec. 10. 

I t would be expected that the critical field Hc should 
vanish at the Neel temperature. To find the temperature 
at which # c = 0 , we expand the exponential in the 
distribution function $(R), and again the function 
I j S W + O " 1 is small. Hence the analog of Eq. (6.1) can 
be used to determine the magnetization, with <£(0)+| 
replacing 12(0). The functions $(0) and <£>(5) are given by 

r F(~l) </*> /</«>\« 
* ( 0 ) + i = + ( l + a f c ) + 0 ( ) , (9.17) 

(/•> 1 + a * , 12r \ r / 

r F ( - l ) - l 
*.(5)= 

</*> /(fz)\* 
+ — ( l + a f c ) ( F ( 2 ) - l ) + 0 [ — ) . (9.18) 

12r \ r J 

Taking the limit (/*)—»0, the temperature at which 
Hc=0 [ seeEq. (9.9)] is 

r ( F c = 0 ) = r o [ l - 2 a r 0 ( F ( - l ) - l ) ] , (9.19) 

where r0 was defined in Eq. (6.10), (/= 1) and is equal 
to the Neel temperature in the RPA for zero anisotropy. 
Values of the temperature T(HC=0) for the two lattice 
types and various spin values are given in Table I I . 

I t is interesting to compare the temperature given by 
Eq. (9.19) with that obtained in Sec. 8; that is, with the 
temperature at which the critical field of the antiferro­
magnetic phase vanishes [see Eq. (8.17)]. We would 
expect both of these values to be the Neel temperature 
as calculated in Sec. 4. We recall however, that in the 
lower transition the value of r ( i7 c

a =0) was self-incon­
sistent. The expression for T(HC=$) in the upper phase 
transition is not self-inconsistent, but it is independent 
of the anisotropy, and hence it does not agree with the 
Neel temperature. Even in the absence of anisotropy, 
the temperatures r(Hc

a=0) and T(HC=0) are identical 
only in RPA, and differ quite widely in CD, as can be 
seen in Table I I . Hence we must again conclude that the 
decoupling procedures for the anisotropy are inadequate 
in the vicinity of the Neel temperature. 

The magnetization (fz) near T(Hc=0) can be found 
from Eqs. (9.17) and (9.18) and to first order in 
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l - [ Y / r ( 2 ? c = 0 ) ] , 

{f>)*=La[\-(T/T(Hc=-0))-}, (9.20) 

where La is the same function of TO and TN as was the 
similar quantity Ca given in Eq. (6.15). That is, 

£ „ = -

r0r(Hc=0)F(~l) 

2 T ( # C = 0 ) - T 0 

1 ( 2 S - l ) ( 2 S + 3 ) 2 a r 0
2 F ( - l ) 

. (9.21) 

12 6 0 F ( - 1 ) 1 2 2 [ 2 T ( H C = 0 ) - T O ] 

In the vicinity of the temperature T(HC=0) the critical 
field can now be found using the previous results. 

"-"H1-^]} 
1/2 

(ff,=0)_ 

r(Hc=0) K( _ 5 ( 5 + l ) \ n 
X p . _ ^ 1 „ 2 a — ) | . (9.22) 

The critical field predicted by Eq. (9.22) vanishes and 
has an infinite slope for T=T(HC~0). 

We have mentioned that the effect of the anisotropy 
on the para-flop transition curve is to move it down­
wards, while it moves the anti-flop curve upwards. I t is 
interesting to determine the value of the anisotropy 
required for the two transition curves to meet at T—Q. 
Using Eqs. (7.6) and (9.15) and recalling the definition 
of £ in Eq. (1.7), we find that at T^-Q (in CD) the spin-
flop phase is absent if 

K?/zJ>\. (9.23) 

Hence the anisotropy constant must be of the order of 
the exchange field. This condition is possible for 
materials with small Neel temperatures and large ani­
sotropy fields. Under these conditions the antiferro-
magnetic phase would go over to the paramagnetic phase 
upon the application of an external field greater than 
the critical field given in Eq. (9.15). Siderite (FeC03) 
exhibits20 such a metamagnetic transition (at approxi­
mately 200 kOe). 

The paramagnetic susceptibility % above the Neel 
temperature, where the spontaneous magnetization 
vanishes, can also be determined. Setting the anisotropy 

Antiferromagnet 
Para-phase 

2Sz | j | r 

t iWk) 

* - * ' " > ( - * . k(,"> 
FIG. 7. Spin-wave spectra of ferromagnet at H=0, and anti­

ferromagnet at the flop-para transition (K—0). 

K=0 and (fs)=xH/fi2N) and retaining terms linear in 
H only, we find from Eq. (6.1) and the analogs of Eqs. 
(6.2) and (6.3) the following relations: 

5 ( 5 + 1 ) zJrX 1 

1+0^5 = -

M W N 

X ?[ l -

ZJTX 1 

zJy ~r"1 

— ( l + a i M ( l - 7 k ) 
fi2N 

(9.24) 

/AY N 

r zJx ^ l 

X E T k 1 ~ ( l+c^a ) ( l -Yk) 
k L y?N 

(9.25) 

Expanding the summands in the above two equations, 
the susceptibility can be found as a power series in 1/r. 
Using the relations given by Eq. (6.5) the result is 

x = 1 + 
zJ r L r (vJ 

X 
/ S{S+1)\ Z i y i 

(9.26) 

where rM corresponds to the paramagnetic Neel tem­
perature given by molecular field theory. 

T M - | 5 ( 5 + 1 ) . (9.27) 

Equation (9.26) can be written approximately as 

x=-
Zj T+TM 

10. RESULTS AND DISCUSSION 

(9.28) 

The sublattice magnetizations, susceptibilities, and 
phase transition boundaries of both the antiferromag-
netic and paramagnetic phases have been calculated, 
with results to be summarized and described below. Of 
particular physical interest is the temperature depend­
ence of the flop-para transition curve, as it directly 
reflects the renormalization of the spin-wave modes in 
the paramagnetic phase [recall Eq. (1.3)]. The analysis 
of the paramagnetic phase at the transition is remark­
ably like the analysis of a ferromagnet at zero field. The 
change of sign of / inverts the spin-wave spectrum, and 
the critical field brings the mode at k = (ir/a)( 1,1,1) (sc) 
to zero frequency; a shift of origin of the Brillouin zone 
then makes the spectrum appear identical to that of a 
ferromagnet at zero field (see Fig. 7). I t thereby might 
be expected that the flop-para transition curve would 
behave as (1 — constr572) at low temperatures, in agree­
ment with the well known Dyson8 result that the spin-
wave energies are "renormalized by the energy (r5/2) 
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rather than the magnetization (r 3 / 2 ) ." This is not so, for 
the following reasons. Let us first recall that for zero 
anisotropy the renormalization factor is, according to 
Ref. 25 [also see Eq. (9.9)] 

R-((fz)/s)Li+(W2S^y (10.1) 

where \f/s is the transverse correlation function of nearest 
neighbor spins 

^ H / ~ g + > , » / + 8 . (10.2) 

If the thermally excited magnons are very long com­
pared to the nearest-neighbor distance, as they are in 
the ferromagnet, t̂ g is identical to the self-correlation 
function \p$ to leading order in a temperature expansion. 
This immediately relates the temperature dependence 
of \f/8 to that of (/*), and one obtains directly that if 

< / ' ) / 5 = l - K t ) r , 8 / 2 / 5 , (10.3) 

^ ^ o = 2 S f ( f ) r , 3 / 2 , (10.4) 
then 

where r' is an appropriate reduced temperature8 and 
f (f) is the Riemann zeta function. Then 

*(• H 
r '3/2 

. - « » T + . •X 
r '3/2 

s 
= 0{r^) (10.5) 

This cancellation of the cross terms in Eq. (10.5) is the 
celebrated result of Dyson. 

For the antiferromagnet at the flop-para transition 
the above considerations again apply, except that the 
thermally excited spin waves have precisely opposite 
phase for the nearest-neighbor ions, the thermal spin 
waves being centered at the edge of the Brillouin zone. 
Consequently, the correlation function has the magni­
tude given in Eq. (10.4) but opposite sign. Thus 

o-(i-«&T+-X»-«fr7+-) R(r 

- 1 f(f)r '3 /H-0(r '5 /2) (10.6) 
S 

or, the coefficient of r '3/2 in the flop-para transition curve 
is twice that in the reduced magnetization of a ferromagnet 
with equal \ J \. The r / 5 /2 terms in the flop-para transition 
boundaries have been given in Eq. (9.15). 

Dyson has shown that the cancellation of the terms in 
a ferromagnet is related physically to the cancellation 
of kinematical corrections against dynamical-kinemati-
cal interference terms. The kinematical correction finds 
expression in the factor {fz)/S in R, and the dynamical-
kinematical term manifests itself in the correlation 
function ^5. The cancellation of the cross terms in (10.5) 
is, then, the physical cancellation of kinematical and 
dynamical-kinematical terms. However, the effective 

spin-wave interaction in the antiferromagnet is repulsive 
rather than attractive as in the ferromagnet. Thus the 
dynamical correction at the flop-para transition inverts the 
sign of the dynamical-kinematical interference and 
doubles the effect of the pure kinematical term {fz)/S7 

rather than cancelling it. 
Keffer and Loudon10 have given another interesting 

heuristic interpretation for the renormalization of ferro­
magnetic spin waves by thermal excitation of others. 
They draw an analogy with waves on a liquid surface, 
and point out that a ripple superposed on a long wave 
senses only the local curvature of the surface produced 
by the latter. This curvature is analogous to the angle 
between neighboring spins, or to the energy. Hence a 
ripple is renormalized by the energy if the thermal waves 
are all very long. If the thermal waves are predominately 
short, the argument can be inverted, and the relevant 
measure of their effect is their total number (or, in the 
magnetic case, the magnetization). At the flop-para 
transition the thermal spin waves are very short and the 
renormalization does, indeed, occur by the magnetiza­
tion (r3 /2). 

Turning now to the lower transition, we examine the 
qualitative features of the renormalization of the anti-
ferromagnetic spin-wave modes. At zero field the simple 
spin-wave modes13-15 are doubly degenerate, with an 
energy gap related to the anisotropy [cf. Fig. 8(a)] . A 
field E then splits the degeneracy, moving the modes 
up and down by ZLJJLH. The renormalization then has 
two effects. Firstly, the curvature of the spectrum is 
flattened, decreasing the energy gap [Fig. 8(b)] from 
A to JRI(T)A. Secondly, the effect of the field is reduced, 
the modes moving up and down by •±LIAHR<2,{T). Thus 
RI{T) is the renormalization factor for the spin-wave 
energies at zero H, and RZ(T) is the renormalization 
factor for the effective spin (or magnetic moment) 
carried by a spin wave. Both RI(T) and ^ ( r ) decrease 
with increasing T. The field required to reduce the k = 0 
mode to a given frequency a> is, then, 

yM(fa) = [ ^ 1 ( r ) / i ? 2 ( r ) ]A- [ * « / * , ( T ) ] . (10.7) 

The competition of R\{r) and R<L(T) is evidenced by the 
change in slope of the H(co) versus T curves (Fig. 9), the 

t 
ti«(k) 

A+/*H 
A 

A-^H 

y H=0 

of' 
_—-—' RiA+^HRj> 

R,A 
R , A - M H R 2 

H=0 

(<3) (b) 

FIG. 8. Renormalization of antiferromagnetic spin-wave spec­
trum. (a) Simple spin-wave spectrum (r=0). (b) Renormalized 
spectrum, at higher T. 
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TABLE VI. Ratio of perpendicular susceptibilities (XCDV^RPA1) 
at T=0 [Eq. (5.17)] and at T=TN [Eq. (6.16)]. 

Lower Branch 
Resonance 

•~ * 

J?2(r) renormalization being dominant at low T (re­
quiring a larger field with increasing T) and the Ri(r) 
renormalization being dominant at higher T. 

When the R\(r) renormalization reduces the energy 
gap RI(T)A to the signal frequency co, the field H(u) 
required for resonance becomes zero. At higher tempera­
tures the k = 0 modes lies below fico. Application of a 
field H then drives the upper branch of the curve upward 
to resonance, and the condition for resonance becomes 

M#(co) = P c o / ^ W ] - ZRI(T)/R*(T)1 A. (10.8) 

As the temperature increases further the separation 
ftw—Ri(r)A increases, and the field H(co) increases as 
shown in Fig. 9, after Foner.17 

Comparison of theory with experiment is given in 
Table V. The values of / and K are determined by the 
experimental values of the Neel temperature and by the 
field required for resonance at r = 0 ° K , with a particular 
AFMR frequency. Comparison is then made of the 
fields required for resonance at various frequencies, at 
T=0°K, with the temperature at which the field 
vanishes for each frequency, and with the initial slopes 
of the field-versus-temperature curves. The experi­
mental data is taken from the measurements of Foner 
on Cr203 . The agreement, using the CD approximation, 
is quite good. 

Turning now from the phase transitions to the thermo­
dynamic properties of the antiferromagnetic phase, with 
zero external field and vanishing anisotropy, two distinct 
approximations (RPA and CD) have been used to deter­
mine the sublattice magnetization and the parallel and 
perpendicular susceptibilities. For the sublattice mag­
netization and parallel susceptibility both approxima­
tions agree with spin-wave theory for the principal part 
of the r2 term. However, only CD agrees with spin-wave 
theory for the quantum corrections to the r2 term 
(except for S=%). 

The results for the perpendicular susceptibility differ 
considerably in RPA and CD. Molecular-field theory 
predicts a temperature-independent perpendicular sus­
ceptibility and this is precisely the RPA result. How­
ever, at J T = 0 , CD is in agreement with spin-wave 
theory, predicting a decrease from the molecular-field 
value [measured by the small constant c'+c of Eqs. 
(5.4) and (5.8)3- At low temperatures both CD and 
spin-wave theory indicate a decrease proportional to r2. 
According to CD, the susceptibility still has a negative 

FIG. 9. Schematic 
of field required for 
AFMR as a function 
tion of temperature. 

5 

A 
2 

1 
f 
2 
f 
3 

Simple 

r=o 
0.75 
0.87 
0.92 
0.94 
0.95 
0.96 

cubic 
T=TN 

0.75 
0.82 
0.84 
0.86 
0.86 
0.87 

Bodv-centered cubic 
T=0 

0.78 
0.89 
0.93 
0.94 
0.96 
0.96 

T=TN 

0.78 
0.84 
0.87 
0.88 
0.88 
0.89 

slope and has the value ^NT^IZJT^ at the Neel tem­
perature. The values of XCDV^RPA1 at T—0 and at 
T=TN are given in Table VI. The experimental curves 
of MnF2 by Stout and Griffel26 exhibit this general type 
of behavior with x^^=^ivO/x1(J r :=0)==0.76 as com­
pared with our predicted value 0,92. However, we stress 
the fact that our approximations are not expected to be 
valid in the vicinity of the Neel temperature. We 
accordingly place more emphasis on the quantitative 
agreement with spin-wave theory at low temperature, 
and on the general agreement with experimental obser­
vations at intermediate temperatures, than on quanti­
tative comparison with data at the Neel temperature. 

Further insight of the behavior of the perpendicular 
susceptibility may be gained by recalling that the sus­
ceptibility measures the transverse correlation function 

(10.9) 

The physical source of the decrease in x1 from the 
molecular-field value, at r = 0 , is the contribution of the 
spin-wave zero-point oscillations. These contribute 
primarily to the self-correlation term i— j , in the series 
(10.9). As the temperature increases, this self-correlation 
increases with the amplitude of the transverse spin 
components, but the negative nearest-neighbor correla­
tion also builds up as longer-wavelength spin waves are 
excited. The competition of these correlations depends 
delicately on the spin-wave renormalization, giving the 
result 

x^{v?N/2zJ)(l-c4sy (10.10) 

We have specifically taken the anisotropy K to be zero 
in this discussion to stress that the temperature depend­
ence of the perpendicular susceptibility is a fundamental 
property, quite distinct from the phenomenological tem­
perature dependence ascribed to the anisotropy in dis­
cussions based on molecular-field theory.32 

Finally, we note that the approximations here ex­
plored fail in the immediate vicinity of the Neel tem­
perature. In the case of vanishing anisotropy, the 
apparent Neel temperatures of the paramagnetic and 
antiferromagnetic phase are the same in RPA, while 
they differ considerably in CD. The Neel temperatures 
predicted by RPA and CD for the antiferromagnetic 
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phase with zero anisotropy are in agreement with the 
Curie temperatures obtained for a ferromagnet of equal 
| / | , using the same approximations. This equality is in 
close agreement with the Pade predictions of Rush-
brooke and Wood.43 CD yields higher Neel temperatures 
than RPA and for the larger spin values is in better 
quantitative agreement with the results obtained by 
Rushbrooke and Wood. 

I. INTRODUCTION 

THE behavior of the nuclear spin-spin (T2) and 
spin-lattice (Ti) relaxation times of La139 in pure 

fee lanthanum metal has been studied from 25 to 550°C. 
The major part of their temperature dependence can 
be interpreted on the basis of vacancy diffusion and 
formation, on a competition between the two stable 
crystal structure forms, hep and fee, and annealing 
effects, all of which affect the nuclear-spin system via 
the electric-quadrupole interaction. 

X-ray studies1 have shown that hep La metal begins 
to transform to an fee structure at 200°C which is then 
stable even below 200°C. Cold working below 200°C 
restores the hep phase. However, even in the fee phase, 
a small amount of hep phase remains.1 The fact that the 
c/a ratio (c/a)La= 1.61 of hep La is not ideal, and that 
La139 possesses a moderate quadrupole moment, leads 
to a quadrupole interaction which has the effect of 
broadening the resonance linewidth, or alternatively of 
shortening T2, while at the same time reducing the 
intensity of the resonance by removing the satellite 
transitions from the central resonance. The central 
resonance (m=\ —* m~ — §) and the two inner satellites 
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(m= |J|<-»|f |) have been observed2 in hep La which 
was annealed for several days at a temperature just 
below the phase-transition temperature. Another source 
for a quadrupole interaction in hep La, which will mani­
fest itself whenever the local symmetry is noncubic, is 
strains and stacking faults which are difficult to anneal 
away since annealing must be done below 200°C to 
preserve the hep phase. 

The fee phase of La should ideally show no evidence 
of a static quadrupole interaction. However, any devi­
ation from cubic symmetry such as a small amount of 
the hep phase will produce an observable effect. On 
the other hand, even in a pure fee phase rapidly time 
varying or momentary deviations from cubic symmetry 
as may be produced by diffusing vacancies or other 
defects will be observable in a T\ (spin-lattice relaxation-
time) measurement, where T\ is considerably shortened 
via the quadrupolar-relaxation mechanism. 

A study of the La linewidth, with some direct T\ 
measurements, from 25 to 550°C reveals the effect of 
both a static and a time varying quadrupole interaction. 
Quantitative results of vacancy formation and diffusion 
and annealing effects are deduced and are discussed in 
Sec. III. A Knight shift, increasing with temperature, 
is also observed and is qualitatively discussed. 

II. EXPERIMENTAL 

In order to avoid skin-depth-effect problems, the 
samples were prepared in the form of a powder by using 

2 D. Torgeson, D. Peterson, and R. G. Barnes, Bull. Am. Phys. 
Soc. 8, 529 (1963). 
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The nuclear magnetic-resonance spin-lattice (7\) and spin-spin (T2) relaxation times and the Knight shift 
of La139 in pure fee lanthanum metal have been studied from 295 to 825°K. The relaxation times exhibit a 
temperature dependence which can be explained by vacancy diffusion and annealing effects that perturb the 
spin system via the nuclear electric-quadrupole interaction. At the highest temperatures, it is found that 
T\ = r2cc exp(Ea/kT) where Ea= 15 kcal/mole is found for the activation energy of vacancy formation and 
diffusion. The Knight shift is found to increase from 0.64% at 295°K to 0.72% at 825°K, which may be the 
result of an electron-phonon interaction. 


